An integrated artificial neural network-genetic algorithm clustering ensemble for performance assessment of decision making units
نویسندگان
چکیده
This study proposes a non-parametric efficiency frontier analysis method based on artificial neural network (ANN) and genetic algorithm clustering ensemble (GACE) for measuring efficiency as a complementary tool for the common techniques of the efficiency studies in the previous studies. The proposed ANN GA algorithm is able to find a stochastic frontier based on a set of input–output observational data and do not require explicit assumptions about the functional structure of the stochastic frontier. Furthermore, it uses a similar approach to econometric methods for calculating the efficiency scores. Moreover, the effect of the return to scale of decision making unit (DMU) on its efficiency is included and the unit used for the correction is selected based on its scale (under constant return to scale assumption). Also, in this algorithm, GA is used to cluster DMUs to increase A. Azadeh (B) Department of Industrial Engineering and Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran e-mail: [email protected]; [email protected] M. Saberi Institute for Digital Ecosystems & Business Intelligence, Curtin University of Technology, Perth, Australia e-mail: [email protected] M. Saberi Department of Industrial Engineering, Faculty of Engineering, University of Tafresh, Tafresh, Iran M. Anvari Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran M. Mohamadi Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran DMUs’ homogeneousness. It should be noted that data envelopment analysis (DEA) is sensitive to the presence of the outliers and statistical noise. It is also not capable of performing prediction and forecasting. This is shown by two examples related to outlier situations. However, the proposed algorithm is capable of handling outliers and noise and DEA is used as a benchmark to show advantages of the proposed algorithm. Also, the proposed algorithm and conventional algorithm are compared in viewpoint of DEA through statistical t-test. The proposed approach is applied to a set of actual conventional power plants to show its applicability and superiority.
منابع مشابه
Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملIdentifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Intelligent Manufacturing
دوره 22 شماره
صفحات -
تاریخ انتشار 2011